第662章 绝对虚无,故人重现(1/2)

天才一秒记住本站地址:[笔趣阁]
https://www.ibqg.vip 最快更新!无广告!

何谓虚数?

字面意义上,便是指虚幻的不存在的数。

举个例子来讲。

像是x2+1=0这个二次方程式,它虽然结构简单,可其式子中的x,在整个实数范围内都找不到任何解。

若是一定要找到x的解,那么就需要前往虚数领域中去寻索。

所以,该如何做呢?

很简单。

首先想象一下,在一片无垠无际的虚无间,存在着一条朝左右两侧无限延伸没有任何尽头的直线。

然后在这条直线上找到,或者说选择一个点,定义为0,再将其定义为原点。

随后,再在这一原点(0)的右侧,定义一定距离外的某一个点,为1。

接着,在1的右侧走过一段与1和0之间完全相等的距离。

停下来,再定义一个点,为2。

以此,无限类推下去。

便可不断推出3、4、5、6……直到无穷。

那么这一条直线上所有与0和1之间,与1和2之间,与2和3之间距离相等的点,就是整数。

而在0和1之间,在1和2之间,在2和3之间的所有点,便是分数与无理数。

最后,在原点(0)右侧的所有点,无论无理数、分数还是整数,就都尽皆属于正数。

至于在原点(0)左侧那所有的,与原点(0)右侧所有的点都完美对称的点,则都是负数。

于是,在这条无限长直线之上的数字,便都为实数。

任何一个实数,若想从一个点到达另一个点,都必须要经过两点之间的所有整数、分数及无理数。

譬如从3到达4,就得经过3.0001,经过3.1111,经过3.……,经过√10,经过3.3333,经过……总之各种各样共计不可数无穷个数。

由此便不难发现,在这一条代表着所有实数的悠长直线上,除却原点(0)之外的任何一个点的平方(^2),其结果都会且只会出现在这一条直线原点(0)的右侧,也就是正数范畴里。

譬如正数5的平方(52),就是25,依然属于正数,在原点(0)的右侧。

再譬如负数-5的平方(-52),也一样是25,一样属于正数,一样在原点(0)的右侧。

5与-5这一正一负两个截然相反的数,在经历了平方相乘运算过程后,却得到了同样的数,并且同样是正数。

很神奇吗?

本章未完,点击下一页继续阅读。